
NYX User’s Guide

September 27, 2013

2

Contents

1 Introduction 7

2 Getting Started 9

2.1 Getting Started With Git . 9

2.2 Building the Code . 10

2.3 Running the Code . 10

2.4 Visualization of the Results . 10

3 Inputs Files 11

3.1 Problem Geometry . 11

3.1.1 List of Parameters . 11

3.1.2 Examples of Usage . 11

3.2 Domain Boundary Conditions . 12

3.2.1 List of Parameters . 12

3.2.2 Notes . 12

3.2.3 Examples of Usage . 12

3.3 Resolution . 12

3.3.1 List of Parameters . 12

3.3.2 Examples of Usage . 13

3.4 Tagging . 13

3.4.1 List of Parameters . 13

3.4.2 Notes . 13

3.5 Regridding . 13

3.5.1 Overview . 13

3.5.2 List of Parameters . 14

3.5.3 Notes . 14

3.5.4 Examples of Usage . 14

3.5.5 How Grids are Created . 15

3.6 Simulation Time . 15

3.6.1 List of Parameters . 15

3.6.2 Notes . 15

3.6.3 Examples of Usage . 16

3.7 Time Step . 16

3.7.1 List of Parameters . 16

3.7.2 Examples of Usage . 16

3

3.8 Subcycling . 17

3.8.1 List of Parameters . 17

3.8.2 Examples of Usage . 17

3.9 Restart Capability . 17

3.9.1 List of Parameters . 18

3.9.2 Notes . 18

3.9.3 Examples of Usage . 18

3.10 Controlling PlotFile Generation . 19

3.10.1 List of Parameters . 19

3.10.2 Notes . 19

3.10.3 Examples of Usage . 19

3.11 Screen Output . 20

3.11.1 List of Parameters . 20

3.11.2 Notes . 20

3.11.3 Examples of Usage . 20

3.12 Gravity . 21

3.12.1 List of Parameters . 21

3.12.2 Notes . 21

3.13 Physics . 21

3.13.1 List of Parameters . 21

4 Units and Constants 23

4.1 Units and Constants . 23

5 Equations in Comoving Coordinates 29

5.1 Hydrodynamic Equations in Comoving Coordinates 29

5.1.1 Conservative Form . 29

5.1.2 Tracing . 30

5.2 Subgrid Scale Model in Comoving Coordinates . 30

6 Gravity 33

7 Dark Matter Particles 35

7.1 Equations . 35

7.2 Initializing the Particles . 35

7.2.1 Read from an ASCII file . 35

7.2.2 Read from a binary file . 36

7.2.3 Read from a binary ”meta” file . 36

7.2.4 Reading SPH particles . 36

7.2.5 Random placement . 37

7.2.6 Cosmological . 37

7.2.6.1 Generating a transfer function . 37

7.2.6.2 Setting up the initial displacements 38

7.2.6.3 Using Nyx with cosmological initial conditions 39

7.3 Time Stepping . 39

7.3.1 Random . 39

4

7.3.2 Motion by Self-Gravity . 40
7.3.2.1 Move-Kick-Drift Algorithm . 40
7.3.2.2 Computing g . 40

7.4 Output Format . 41
7.4.1 Checkpoint Files . 41
7.4.2 Plot Files . 41
7.4.3 ASCII Particle Files . 41
7.4.4 Run-time Data Logs . 42
7.4.5 Run-time Screen Output . 42

8 Visualization 43
8.1 amrvis . 43
8.2 VisIt . 43
8.3 yt . 43
8.4 Controlling What’s in the PlotFile . 44

9 Software Framework 45
9.1 Code structure . 45
9.2 Variable Names . 46
9.3 Parallel I/O . 46

10 Verification Test Problems 49
10.1 Cosmology Test Problems . 49

10.1.1 90Mpc Box Problem from Cosmic Data Arxiv 49

References 49

5

6

Chapter 1

Introduction

Welcome to the NYX User’s Guide!

In this User’s Guide we describe how to download and run Nyx, a massively parallel code that
couples the compressible hydrodynamic equations on a grid with a particle represenation of dark
matter.

Nyx uses an Eulerian grid for the hydrodynamics solver and incorporates adaptive mesh refine-
ment (AMR).

7

8

Chapter 2

Getting Started

2.1 Getting Started With Git

Please note that Nyx is not yet available for public release. If you have heard about Nyx and are
interested in trying it, please contact Ann Almgren at asalmgren@lbl.gov

Nyx is now distributed in two parts using git – you must first download the BoxLib repository,
then the Nyx repo.

To use Nyx:

1. Assuming git is installed on your machine – and we recommend version 1.7.x or higher –
download the BoxLib repository by typing

git clone https://ccse.lbl.gov/pub/Downloads/BoxLib.git

This will create a directory called BoxLib on your machine. Put this somewhere out of the
way and set the environment variable, BOXLIB HOME, on your machine to the path name
where you have put BoxLib. You will want to periodically update BoxLib by typing

git pull

in the BoxLib directory.

2. We will have set up an account for you; follow the instructions we have given you to access
Nyx itself.

9

2.2 Building the Code

1. From the directory in which you checked out Nyx, type

cd Nyx/Exec/Test 90Mpc

This will put you into a directory in which you can run the 90Mpc test problem from
http://t8web.lanl.gov/people/heitmann/arxiv/

2. In Test 90Mpc, edit the GNUmakefile, and set

COMP = your favorite C++ compiler

FCOMP = your favorite Fortran compiler (which must compile F90)

DEBUG = FALSE

We like COMP = gcc and FCOMP = gfortran.

3. Now type ”make”. The resulting executable will look something like ”Nyx3d.Linux.gcc.gfortran.ex”,
which means this is a 3-d version of the code, made on a Linux machine, with COMP = gcc
and FCOMP = gfortran.

2.3 Running the Code

1. Type “Nyx3d.Linux.gcc.gfortran.ex inputs”

2. You will notice that running the code generates directories that look like plt00000, plt00020,
etc, and chk00000, chk00020, etc. These are ”plotfiles” and ”checkpoint” files. The plotfiles
are used for visualization, the checkpoint files are used for restarting the code.

2.4 Visualization of the Results

1. To visualize the plotfiles, you can use Visit, yt, or a homegrown visualization tool known as
amrvis.

To use amrvis, please contact Ann Almgren (asalmgren@lbl.gov) for information on how to
download it. Visit and yt are available from their web sites.

You have now completed a brief introduction to Nyx.

10

Chapter 3

Inputs Files

The Nyx executable reads run-time information from an ”inputs” file (which you put on the com-
mand line) and from a ”probin” file, the name of which is usually defined in the inputs file, but
which defaults to ”probin”. To set the ”probin” file name in the inputs file:

amr.probin file = my special probin

for example, has the Fortran code read a file called “my special probin”

3.1 Problem Geometry

3.1.1 List of Parameters

Parameter Definition Acceptable Values Default
geometry.prob lo physical location of low corner of the domain Real must be set
geometry.prob hi physical location of high corner of the domain Real must be set
geometry.coord sys coordinate system 0 = Cartesian, 1 = r-z, 2 = spherical must be set
geometry.is periodic is the domain periodic in this direction 0 if false, 1 if true 0 0 0

3.1.2 Examples of Usage

• geometry.prob lo = 0 0 0
defines the low corner of the domain at (0,0,0) in physical space.

• geometry.prob hi = 1.e8 2.e8 2.e8
defines the high corner of the domain at (1.e8,2.e8,2.e8) in physical space.

• geometry.coord sys = 0
defines the coordinate system as Cartesian

• geometry.is periodic = 0 1 0
says the domain is periodic in the y-direction only.

11

3.2 Domain Boundary Conditions

3.2.1 List of Parameters

Parameter Definition Acceptable Values Default
nyx.lo bc boundary type of each low face 0,1,2,3,4,5 must be set
nyx.hi bc boundary type of each high face 0,1,2,3,4,5 must be set

3.2.2 Notes

Boundary types are:

0 – Interior / Periodic 3 – Symmetry
1 – Inflow 4 – Slip Wall
2 – Outflow 5 – No Slip Wall

Note – nyx.lo bc and nyx.hi bc must be consistent with geometry.is periodic – if the domain
is periodic in a particular direction then the low and high bc’s must be set to 0 for that direction.

3.2.3 Examples of Usage

• nyx.lo bc = 1 4 0

• nyx.hi bc = 2 4 0

• geometry.is periodic = 0 0 1

would define a problem with inflow (1) in the low-x direction, outflow(2) in the high-x direction,
slip wall (4) on the low and high y-faces, and periodic in the z-direction.

3.3 Resolution

3.3.1 List of Parameters

Parameter Definition Acceptable Values Default
amr.n cell number of cells in each direction at the coarsest level Integer > 0 must be set
amr.max level number of levels of refinement above the coarsest level Integer ≥ 0 must be set
amr.ref ratio ratio of coarse to fine grid spacing between subsequent levels 2 or 4 must be set
amr.regrid int how often to regrid Integer > 0 must be set
amr.regrid on restart should we regrid immediately after restarting 0 or 1 0

Note: if amr.max level = 0 then you do not need to set amr.ref ratio or amr.regrid int.

12

3.3.2 Examples of Usage

• amr.n cell = 32 64 64

would define the domain to have 32 cells in the x-direction, 64 cells in the y-direction, and
64 cells in the z-direction at the coarsest level. (If this line appears in a 2D inputs file then
the final number will be ignored.)

• amr.max level = 2
would allow a maximum of 2 refined levels in addition to the coarse level. Note that these ad-
ditional levels will only be created only if the tagging criteria are such that cells are flagged as
needing refinement. The number of refined levels in a calculation must be ≤ amr.max level,
but can change in time and need not always be equal to amr.max level.

• amr.ref ratio = 2 4
would set factor 2 refinement between levels 0 and 1, and factor 4 refinement between levels 1
and 2. Note that you must have at least amr.max level values of amr.ref ratio (Additional
values may appear in that line and they will be ignored).

• amr.regrid int = 2 2
tells the code to regrid every 2 steps. Thus in this example, new level 1 grids will be created
every 2 level 0 time steps, and new level 2 grids will be created every 2 level 1 time steps.

3.4 Tagging

3.4.1 List of Parameters

Parameter Definition Acceptable Values Default
nyx.allow untagging are cells allowed to be ”untagged” 0 or 1 0

3.4.2 Notes

• Typically cells at a given level can be tagged as needing refinement by any of a number of
criteria, but cannot be ”untagged”, i.e. once tagged no other criteria can untag them. If
we set nyx.allow untagging = 1 then the user is allowed to ”untag” cells in the Fortran
tagging routines

3.5 Regridding

3.5.1 Overview

The details of the regridding strategy are described in a later section; here we cover how the input
parameters can control the gridding.

As described later, the user defines Fortran subroutines which tag individual cells at a given
level if they need refinement. This list of tagged cells is sent to a grid generation routine, which
uses the Berger-Rigoutsis algorithm to create rectangular grids that contain the tagged cells.

13

3.5.2 List of Parameters

Parameter Definition Acceptable Values Default
amr.regrid file name of file from which to read the grids text no file
amr.grid eff grid efficiency at coarse level at which grids are created Real > 0 and < 1 0.7
amr.n error buf radius of additional tagging around already tagged cells Integer ≥ 0 1
amr.max grid size maximum size of a grid in any direction Integer > 0 128 in 2D, 32 in 3D
amr.blocking factor grid size must be a multiple of this Integer > 0 2
amr.refine grid layout refine grids more if # of processors > # of grids 0 if false, 1 if true 1

3.5.3 Notes

• amr.n error buf, amr.max grid size and amr.blocking factor can be read in as a single
value which is assigned to every level, or as multiple values, one for each level

• amr.max grid size at every level must be even

• amr.blocking factor at every level must be a power of 2

• the domain size must be a multiple of amr.blocking factor at level 0

• amr.max grid size must be a multiple of amr.blocking factor at every level

3.5.4 Examples of Usage

• amr.regrid file = fixed grids
In this case the list of grids at each fine level are contained in the file, fixed grids, which will
be read during the gridding procedure. These grids must not violate the amr.max grid size
criterion. The rest of the gridding procedure described below will not occur if amr.regrid file
is set.

• amr.grid eff = 0.9
During the grid creation process, at least 90% of the cells in each grid at the level at which
the grid creation occurs must be tagged cells. Note that this is applied at the coarsened level
at which the grids are actually made, and before amr.max grid size is imposed.

• amr.max grid size = 64
The final grids will be no longer than 64 cells on a side at every level.

• amr.max grid size = 64 32 16
The final grids will be no longer than 64 cells on a side at level 0, 32 cells on a side at level
1, and 16 cells on a side at level 2.

• amr.blocking factor = 32
The dimensions of all the final grids will be multiples of 32 at all levels.

• amr.blocking factor = 32 16 8
The dimensions of all the final grids will be multiples of 32 at level 0, multiples of 16 at level
1, and multiples of 8 at level 2..

14

Having grids that are large enough to coarsen multiple levels in a V-cycle is essential for good
multigrid performance in simulations that use self-gravity.

3.5.5 How Grids are Created

The gridding algorithm proceeds in this order:

1. Grids are created using the Berger-Rigoutsis clustering algorithm modified to ensure that all
new fine grids are divisible by amr.blocking factor.

2. Next, the grid list is chopped up if any grids are larger than max grid size. Note that be-
cause amr.max grid size is a multiple of amr.blocking factor the amr.blocking factor
criterion is still satisfied.

3. Next, if amr.refine grid layout = 1 and there are more processors than grids, and

• if amr.max grid size / 2 is a multiple of amr.blocking factor

then the grids will be redefined, at each level independently, so that the maximum length of
a grid at level `, in any dimension, is amr.max grid size[`] / 2.

4. Finally, if amr.refine grid layout = 1, and there are still more processors than grids, and

• if amr.max grid size / 4 is a multiple of amr.blocking factor

then the grids will be redefined, at each level independently, so that the maximum length of
a grid at level `, in any dimension, is amr.max grid size[`] / 4.

3.6 Simulation Time

3.6.1 List of Parameters

Parameter Definition Acceptable Values Default
max step maximum number of level 0 time steps Integer ≥ 0 -1
stop time final simulation time Real ≥ 0 -1.0
nyx.final a if nyx.use comoving = t and positive value then this is final value of a Real > 0 -1.0
nyx.final z if nyx.use comoving = t and positive value then this is final value of z Real > 0 -1.0

3.6.2 Notes

To control the number of time steps, you can limit by the maximum number of level 0 time steps
(max step), or the final simulation time (stop time), or both. The code will stop at whichever
criterion comes first. Note that if the code reaches stop time then the final time step will be
shortened so as to end exactly at stop time, not pass it.

If running in comoving coordinates you can also set a final value of a by setting nyx.final a,
or a final value of z by setting nyx.final z. You may only specify one or the other of these. Once
this value of a or z is reached in a time step, the code will stop at the end of this full coarse time
step. (Note it does not stop at a (or z) exactly equal to the final value, rather it stops once a is
greater than (or z is less than) this value.)

15

3.6.3 Examples of Usage

• max step = 1000

• stop time = 1.0

will end the calculation when either the simulation time reaches 1.0 or the number of level 0 steps
taken equals 1000, whichever comes first.

3.7 Time Step

• If nyx.do hydro= 1, then typically the code chooses a time step based on the CFL number
(dt = cfl * dx / max(u+c)).

• If nyx.do hydro= 0 and we are running with dark matter particles, then we use a time step
based on the velocity of the particles, i.e. we set ∆t so that the particle goes no further than
f∆t in a coordinate direction where 0 ≤ f ≤ 1. The value for f is currently hard-wired in
Particles.H, but it will become an inputs parameter.

3.7.1 List of Parameters

Parameter Definition Acceptable Values Default
nyx.cfl CFL number for hydro Real > 0 and ≤ 1 0.8
particles.cfl CFL number for particles Real > 0 and ≤ 1 0.5
nyx.init shrink factor by which to shrink the initial time step Real > 0 and ≤ 1 1.0
nyx.change max factor by which the time step can grow in subsequent steps Real ≥ 1 1.1
nyx.fixed dt level 0 time step regardless of cfl or other settings Real > 0 unused if not set
nyx.initial dt initial level 0 time step regardless of other settings Real > 0 unused if not set
nyx.dt cutoff time step below which calculation will abort Real > 0 0.0

3.7.2 Examples of Usage

• nyx.cfl = 0.9
defines the timestep as dt = cfl * dx / umax hydro.

• particles.cfl = 0.9
defines the timestep as dt = cfl * dx / umax particles where umax particles is the maximum
velocity of any particle in the domain.

• nyx.init shrink = 0.01
sets the initial time step to 1% of what it would be otherwise.

• nyx.change max = 1.1
allows the time step to increase by no more than 10% in this case. Note that the time step
can shrink by any factor; this only controls the extent to which it can grow.

• nyx.fixed dt = 1.e-4
sets the level 0 time step to be 1.e-4 for the entire simulation, ignoring the other timestep
controls. Note that if nyx.init shrink 6= 1 then the first time step will in fact be
nyx.init shrink * nyx.fixed dt.

16

• nyx.initial dt = 1.e-4
sets the initial level 0 time step to be 1.e-4 regardless of nyx.cfl or nyx.fixed dt. The time
step can grow in subsequent steps by a factor of nyx.change max each step.

• nyx.dt cutoff = 1.e-20
tells the code to abort if the time step ever gets below 1.e-20. This is a safety mechanism so
that if things go nuts you don’t burn through your entire computer allocation because you
don’t realize the code is misbehaving.

3.8 Subcycling

Nyx supports a number of different modes for subcycling in time.

• If amr.subcycling mode=Auto (default), then the code will run with equal refinement in
space and time. In other words, if level n + 1 is a factor of 2 refinement above level n, then
n+ 1 will take 2 steps of half the duration for every level n step.

• If amr.subcycling mode=None, then the code will not refine in time. All levels will advance
together with a timestep dictated by the level with the strictest dt. Note that this is identical
to the deprecated command amr.nosub = 1.

• If amr.subcycling mode=Manual, then the code will subcycle according to the values sup-
plied by subcycling iterations.

3.8.1 List of Parameters

Parameter Definition Acceptable Values Default
amr.subcycling mode How shall we subcycle Auto, None or Manual Auto
amr.subcycling iterations Number of cycles at each level 1 or ref ratio must be set in Manual mode

3.8.2 Examples of Usage

• amr.subcycling mode=Manual
Subcycle in manual mode with largest allowable timestep.

• amr.subcycling iterations = 1 2 1 2
Take 1 level 0 timestep at a time (required). Take 2 level 1 timesteps for each level 0 step, 1
timestep at level 2 for each level 1 step, and take 2 timesteps at level 3 for each level 2 step.

• amr.subcycling iterations = 2
Alternative form. Subcycle twice at every level (except level 0).

3.9 Restart Capability

Nyx has a standard sort of checkpointing and restarting capability. In the inputs file, the following
options control the generation of checkpoint files (which are really directories):

17

3.9.1 List of Parameters

Parameter Definition Acceptable Values Default
amr.check file prefix for restart files Text ”chk”
amr.check int how often (by level 0 time steps) to write restart files Integer > 0 -1
amr.check per how often (by simulation time) to write restart files Real > 0 -1.0
amr.restart name of the file (directory) from which to restart Text not used if not set
amr.checkpoint files output should we write checkpoint files 0 or 1 1
amr.check nfiles how parallel is the writing of the checkpoint files Integer ≥ 1 64
amr.checkpoint on restart should we write a checkpoint immediately after restarting 0 or 1 0

3.9.2 Notes

• You should specify either amr.check int or amr.check per. Do not try to specify both.

• Note that if amr.check per is used then in order to hit that exact time the code may modify
the time step slightly, which will change your results ever so slightly than if you didn’t set
this flag.

• Note that amr.plotfile on restart and amr.checkpoint on restart only take effect if
amr.regrid on restart is in effect.

• See the Software Section for more details on parallel I/O and the amr.check nfiles param-
eter.

• If you are doing a scaling study then set amr.checkpoint files output = 0 so you can test
scaling of the algorithm without I/O.

3.9.3 Examples of Usage

• amr.check file = chk run

• amr.check int = 10

means that restart files (really directories) starting with the prefix ”chk run” will be gener-
ated every 10 level 0 time steps. The directory names will be chk run00000, chk run00010,
chk run00020, etc.

If instead you specify

• amr.check file = chk run

• amr.check per = 0.5

then restart files (really directories) starting with the prefix ”chk run” will be generated
every 0.1 units of simulation time. The directory names will be chk run00000, chk run00043,
chk run00061, etc, where t = 0.1 after 43 level 0 steps, t = 0.2 after 61 level 0 steps, etc.

To restart from chk run00061,for example, then set

• amr.restart = chk run00061

18

3.10 Controlling PlotFile Generation

The main output from Nyx is in the form of plotfiles (which are really directories). The following
options in the inputs file control the generation of plotfiles

3.10.1 List of Parameters

Parameter Definition Acceptable Values Default
amr.plot file prefix for plotfiles Text ”plt”
amr.plot int how often (by level 0 time steps) to write plot files Integer > 0 -1
amr.plot per how often (by simulation time) to write plot files Real > 0 -1.0
amr.plot vars name of state variables to include in plotfiles ALL, NONE or list ALL
amr.derive plot vars name of derived variables to include in plotfiles ALL, NONE or list NONE
amr.plot files output should we write plot files 0 or 1 1
amr.plotfile on restart should we write a plotfile immediately after restarting 0 or 1 0
amr.plot nfiles how parallel is the writing of the plotfiles Integer ≥ 1 64
nyx.plot phiGrav Should we plot the gravitational potential 0 or 1 0

plot the gravitational potential 0 or 1 0
particles.write in plotfile Should we write the particles in a file within the plotfile 0 or 1 0
fab.format Should we write the plotfile in double or single precision NATIVE or IEEE32 NATIVE

All the options for amr.derive plot vars are kept in derive lst in Nyx setup.cpp. Feel free
to look at it and see what’s there.

3.10.2 Notes

• You should specify either amr.plot int or amr.plot per. Do not try to specify both.

• Note that if amr.plot per is used then in order to hit that exact time the code may modify
the time step slightly, which will change your results ever so slightly than if you didn’t set
this flag.

• See the Software Section for more details on parallel I/O and the amr.plot nfiles parameter.

• If you are doing a scaling study then set amr.plot files output = 0 so you can test scaling
of the algorithm without I/O.

• nyx.plot phiGrav is only relevant if nyx.do grav = 1 and gravity.gravity type = Pois-
sonGrav

• By default, plotfiles are written in double precision (NATIVE format). If you want to save
space by writing them in single precision, set the fab.format flag to IEEE32.

3.10.3 Examples of Usage

• amr.plot file = plt run

• amr.plot int = 10

means that plot files (really directories) starting with the prefix ”plt run” will be gener-
ated every 10 level 0 time steps. The directory names will be plt run00000, plt run00010,
plt run00020, etc.

19

If instead you specify

• amr.plot file = plt run

• amr.plot per = 0.5

then restart files (really directories) starting with the prefix ”plt run” will be generated ev-
ery 0.1 units of simulation time. The directory names will be plt run00000, plt run00043,
plt run00061, etc, where t = 0.1 after 43 level 0 steps, t = 0.2 after 61 level 0 steps, etc.

3.11 Screen Output

3.11.1 List of Parameters

Parameter Definition Acceptable Values Default
amr.v verbosity of Amr.cpp 0 or 1 0
nyx.v verbosity of Nyx.cpp 0 or 1 0
gravity.v verbosity of Gravity.cpp 0 or 1 0
mg.v verbosity of multigrid solver (for gravity) 0,1,2,3,4 0
particles.v verbosity of particle-related processes 0,1,2,3,4 0
amr.grid log name of the file to which the grids are written Text not used if not set
amr.run log name of the file to which certain output is written Text not used if not set
amr.run log terse name of the file to which certain (terser) output is written Text not used if not set
amr.sum interval if > 0, how often (in level 0 time steps)

to compute and print integral quantities Integer -1
nyx.do special tagging 0 or 1 1

3.11.2 Notes

• nyx.do special tagging = 1 allows the user to set a special flag based on user-specified
criteria. This can be used, for example, to calculate the bounce time in a core collapse
simulation; the bounce time is defined as the first time at which the maximum density in the
domain exceeds a user-specified value. This time can then be printed into a special file as a
useful diagnostic.

3.11.3 Examples of Usage

• amr.grid log = grdlog
Every time the code regrids it prints a list of grids at all relevant levels. Here the code will
write these grids lists into the file grdlog.

• amr.run log = runlog
Every time step the code prints certain statements to the screen (if amr.v = 1), such as
STEP = 1 TIME = 1.91717746 DT = 1.91717746
PLOTFILE: file = plt00001
Here these statements will be written into runlog as well.

• amr.run log terse = runlogterse
This file, runlogterse differs from runlog, in that it only contains lines of the form

20

10 0.2 0.005
in which ”10” is the number of steps taken, ”0.2” is the simulation time, and ”0.005” is the
level 0 time step. This file can be plotted very easily to monitor the time step.

• nyx.sum interval = 2
if nyx.sum interval > 0 then the code computes and prints certain integral quantities, such
as total mass, momentum and energy in the domain every nyx.sum interval level 0 steps.
In this example the code will print these quantities every two coarse time steps. The print
statements have the form
TIME= 1.91717746 MASS= 1.792410279e+34
for example. If this line is commented out then it will not compute and print these quanitities.

3.12 Gravity

3.12.1 List of Parameters

Parameter Definition Acceptable Values Default
nyx.do grav Include gravity as a forcing term 0 if false, 1 if true must be set if USE GRAV = TRUE
gravity.gravity type if nyx.do grav = 1, how shall gravity be calculated CompositeGrav,

PoissonGrav must be set
gravity.no sync if gravity.gravity type = PoissonGrav, whether to perform the ”sync solve” 0 or 1 0
gravity.no composite if gravity.gravity type = PoissonGrav, whether to perform a composite solve 0 or 1 0

3.12.2 Notes

Gravity types are CompositeGrav or PoissonGrav. See the Gravity section for more detail.

• To include gravity you must set

– USE GRAV = TRUE in the GNUmakefile

– nyx.do grav = 1 in the inputs file

• gravity.gravity type is only relevant if nyx.do grav = 1

• gravity.no sync and gravity.no composite are only relevant if gravity.gravity type =
PoissonGrav, i.e. the code does a full Poisson solve for self-gravity.

3.13 Physics

3.13.1 List of Parameters

21

Parameter Definition Acceptable Values Default
nyx.do hydro Time-advance the fluid dynamical equations 0 if false, 1 if true must be set
nyx.do react Include reactions 0 if false, 1 if true must be set
nyx.add ext src Include additional user-specified source term 0 if false, 1 if true 0
nyx.use const species If 1 then read h species and he species 0 or 1 0
nyx.h species Concentration of H 0 < X < 1 0
nyx.he species Concentration of He 0 < X < 1 0

22

Chapter 4

Units and Constants

4.1 Units and Constants

We support two different systems of units in Nyx: CGS and Cosmological. All inputs and problem
initialization should be specified consistently with one of these sets of units. No internal conversions
of units occur within the code, so the output must be interpreted appropriately.

The default is cosmological units.

If you want to use CGS units instead, then set

USE CGS = TRUE

in your GNUmakefile. This will select the file constants cgs.f90 instead of constants cosmo.f90 from
the Nyx/constants directory.

23

Location Variable CGS Cosmological Conversion Data

inputs file geometry.prob lo cm Mpc 1Mpc = 3.08568025e24 cm
geometry.prob hi cm Mpc 1Mpc = 3.08568025e24 cm

Hydro Initialization density g / cm3 M� / Mpc3 1 (M� / Mpc3) = .06769624e-39 (g/cm3)

Hydro Initialization velocities cm/s km/s 1km = 1.e5 cm

Hydro Initialization momenta (g/cm3) (cm/s) (M�/Mpc3) (km/s) 1km = 1.e5 cm
1 (M� / Mpc3) = .06769624e-39 g/cm3

Hydro Initialization temperature K K 1

Hydro Initialization specific energy (e or E) erg/g= (cm/s)2 (km/s)2 1 (km/s)2 = 1.e10 (cm/s)2

Hydro Initialization energy (ρe or ρE) erg / cm3 = (M�/Mpc3) (km/s)2 1 (km/s)2 = 1.e10 (cm/s)2

(g/cm3) (cm/s)2 1 (M� / Mpc3) = .06769624e-39 g/cm3

Particle Initialization particle mass g M� 1 M� = 1.98892e33 g

Particle Initialization particle locations cm Mpc 1 Mpc = 3.08568025e24 cm

Particle Initialization particle velocities cm/s km/s 1 km = 1e5 cm

Output Pressure g (cm/s)2 / cm3 M� (km/s)2 / Mpc3 1 M� (km/s)2 / Mpc3 =
.06769624e-29 g (cm/s)2 / cm3

Output Gravity (cm/s) / s (km/s)2 / Mpc 1 M� (km/s)2 / Mpc3 =

Output Time s (Mpc/km) s 1 Mpc = 3.08568025e19 km

Table 4.1: Units

24

Constant CGS Cosmological Conversion Data

Gravitational constant (G) 6.67428e-8 cm (cm/s)2 g−1 4.3019425e-9 Mpc (km/s)2 M−1
�

Avogadro’s number (nA) 6.02214129e23 g−1 1.1977558e57 M−1
� 1 M� = 1.98892e33 g

Boltzmann’s constant (kB) 1.3806488e-16 erg / K 0.6941701e-59 M� (km/s)2 / K 1 M� (km/s)2 = 1.98892e43 g (cm/s)2

Hubble constant (H) 100 (km/s) / Mpc 32.407764868e-19 s−1 1 Mpc = 3.08568025e19 km

Table 4.2: Constants

25

The only other place that dimensional numbers are used in the code is in the tracing and
Riemann solve. We set three small numbers which need to be consistent with the data specified.
Each of these can be specified in the inputs file.

• small dens – small value for density

• small p – small value for pressure

• small T – small value for temperature

These are the places that each is used in the code:

• small dens

– subroutine enforce minimum density (called after subroutine consup) – if ρ <
small dens then ρ is set to the minimum value of the 26 neighbors. This also modi-
fies momenta, ρE and ρe so that velocties, E and e remain unchanged.

– subroutine tracexy / tracez / tracexy ppm / tracez ppm:
qxp = max(qxp,small dens)
qxm = max(qxm,small dens)
and analogously for qyp/qym and qzp/qzm. This only modifies density inside the trac-
ing, not the other variables

– subroutine riemannus – we set

wsmall = small dens * csmall

and then

wl = max(wsmall, sqrt(gaml * pl * rl))
wr = max(wsmall, sqrt(gamr * pr * rr))

Also, we set

ro = max(small dens,ro)

where ro = 0.5 * (rl + rr) – this state is only chosen when ustar = 0, and

rstar = max(small dens,rstar)

where rstar = ro + (pstar-po)/co2

– subroutine react state – only compute reaction if ρ > small dens

• small temp:

– subroutine ctoprim: if ρe < 0, then

call subroutine nyx eos given RTX (e,...,small temp,...) in order to compute a new en-
ergy, e.

This energy is then used to

26

call subroutine nyx eos given ReX in order to compute the sound speed, c.

Coming out of this the temperature is equal to small temp and the energy e has been
reset.

– subroutine react state: if ρe < 0, then

call subroutine nyx eos given RTX (e,...,small temp,...) in order to compute a new en-
ergy, e.

This energy is then used to proceed with the burner routine.

– subroutine reset internal energy: if e < 0 and E − ke < 0 then

call subroutine nyx eos given RTX (e,...,small temp,...) in order to compute a new en-
ergy, e. This energy is also used to

define a new E = e+ ke

• small pres:

– subroutine riemannus – we set

pstar = max(small pres,pstar)

pgdnv = max(small pres,pgdnv). Note that pgdnv is the pressure explicitly used in the
fluxes.

– subroutine uflaten – small pres is used to keep the denominator away from zero

– Everywhere we define values of pressure on a face, we set that value to be at least
small pres.

27

28

Chapter 5

Equations in Comoving Coordinates

5.1 Hydrodynamic Equations in Comoving Coordinates

5.1.1 Conservative Form

We solve the equations of gas dynamics in a coordinate system that is comoving with the expanding
universe, with expansion factor, a, related to the redshift, z, by a = 1/(1 + z). The continuity
equation is written,

∂ρb
∂t

= −1

a
∇ · (ρbU) , (5.1)

where ρb is the comoving baryonic density, related to the proper density by ρb = a3ρproper, and U
is the proper peculiar baryonic velocity.

The momentum evolution equation can be expressed as

∂(ρbU)

∂t
=

1

a
(−∇ · (ρbUU)−∇p+ ρbg + SρU − ȧρbU) , (5.2)

or equivalently,

∂(aρbU)

∂t
= −∇ · (ρbUU)−∇p+ ρbg + SρU , (5.3)

where the pressure, p, that appears in the evolution equations is related to the proper pressure,
pproper, by p = a3pproper. Here g = −∇φ is the gravitational acceleration vector, and SρU represents
any external forcing terms.

The energy equation can be written,

∂(ρbE)

∂t
=

1

a
[−∇ · (ρbUE + pU) + (ρbU · g + SρE)− ȧ(3(γ − 1)ρbe+ ρb(U ·U))] . (5.4)

or equivalently,

∂(a2ρbE)

∂t
= a [−∇ · (ρbUE + pU) + ρbU · g + SρE + ȧ((2− 3(γ − 1)) ρbe)] . (5.5)

Here E = e + U ·U/2 is the total energy per unit mass, where e is the specific internal energy.
SρE = Sρe + U · SρU where Sρe = ΛH −ΛC represents the heating and cooling terms, respectively.
We can write the evolution equation for internal energy as

∂(ρbe)

∂t
=

1

a
[−∇ · (ρbUe)− p∇ ·U− ȧ(3(γ − 1)ρbe) + Sρe] . (5.6)

29

or equivalently,

∂(a2ρbe)

∂t
= a [−∇ · (ρbUe)− p∇ ·U + Sρe + ȧ((2− 3(γ − 1)) ρbe)] . (5.7)

Note that for a gamma-law gas with γ = 5/3, we can write

∂(a2ρbE)

∂t
= a [−∇ · (ρbUE + pU) + ρbU · g + Sρe] . (5.8)

and

∂(a2ρbe)

∂t
= a [−∇ · (ρbUe)− p∇ ·U + Sρe] . (5.9)

5.1.2 Tracing

In order to compute the fluxes on faces, we trace ρ,U, ρe and p to the faces.
Thus we must convert the momentum evolution equation into a velocity evolution equation:

∂U

∂t
=

1

ρb

(
∂(ρbU)

∂t
−U

∂ρb
∂t

)
(5.10)

=
1

aρb
(−∇ · (ρbUU)−∇p+ ρbg + SρU − ȧρbU) +

1

a
U ∇ · (ρbU) (5.11)

=
1

a

(
−U · ∇U− 1

ρb
∇p+ g +

1

ρb
SρU − ȧU

)
. (5.12)

5.2 Subgrid Scale Model in Comoving Coordinates

The fundamental modification to the standard compressible equations is the addition of a SGS tur-
bulence energy variable, K and associated source terms in the equations for the evolution of velocity,
total energy, and K [5, 2, 4]. The set of conservation equations in comoving coordinates (5.1)–(5.5)
then becomes [1]:

∂ρb
∂t

=− 1

a
∇ · (ρbU) , (5.13)

∂(aρbU)

∂t
=−∇ · (ρbUU)−∇p+∇ · τ + ρbg , (5.14)

∂(a2ρbE)

∂t
=− a∇ · (ρbUE + pU) + aρbU · g + a∇ · (U · τ)− a2(Σ− ρbε) (5.15)

+ aȧ ((2− 3(γ − 1))ρbe) + a2(ΛH − ΛC) ,

∂(a2ρbK)

∂t
=− a∇ · (ρbUK) + a∇ · (ρbκsgs∇K) + a2(Σ− ρbε) . (5.16)

The interaction between resolved and unresolved turbulent eddies is described by the SGS turbu-
lence stress tensor τ . Since inertial-range dynamics of turbulence is scale-invariant, we conjecture
that τ in comoving coordinates has the same form as for non-expanding fluids. For compressible
turbulence, the following closure is proposed in [3]:

τij = 2C1∆ρb(2Ksgs)
1/2S∗

ij − 4C2ρbK
Ui,kUj,k
|∇U|2

− 2

3
(1− C2)ρbKδij . (5.17)

30

where |∇U| := (2Ui,kUi,k)
1/2 is the norm of the resolved velocity derivative,

S∗
ij = Sij −

1

3
δijd =

1

2
(Ui,j + Uj,i)−

1

3
δijUk,k (5.18)

is the trace-free rate-of strain, and ∆ = (Mx My Mz)1/3 is the grid scale in comoving coordinates.
The production and dissipation terms in equation (5.16) are defined as follows:

Σ =
1

a
τijSij , (5.19)

ε =
CεK

3/2

a∆
, (5.20)

and κsgs = Cκ∆K1/2 is the SGS diffusivity. Here we assume that the Reynolds number of turbulence
is high such that the damping of turbulent eddies by the microscopic viscosity of the fluid occurs
entirely on the subgrid scales. Because of the numerical viscosity of PPM, however, part of the
numerically resolved kinetic energy will be dissipated directly into internal energy.

31

32

Chapter 6

Gravity

In NYX we always compute gravity by solving a Poisson equation on the mesh hierarchy. To make
sure this option is chosen correctly, we must always set

USE GRAV = TRUE

in the GNUmakefile and

castro.do grav = 1
gravity.gravity type = PoissonGrav

in the inputs file.

To define the gravitational vector we set

g(x, t) = −∇φ (6.1)

where

∆φ =
4πG

a
(ρ− ρ) (6.2)

where ρ is the average of ρ over the entire domain if we assume triply periodic boundary conditions,
and a(t) is the scale of the universe as a function of time.

33

34

Chapter 7

Dark Matter Particles

For the moment, assume that we are running in comoving coordinates, with dark matter particles
only (no hydro) and that the particles all exist at level 0. These assumptions are encapsulated in
the following lines in the inputs file:

nyx.use comoving = t
nyx.do dm particles = 1
amr.max level = 0
nyx.do hydro = 0
nyx.do react = 0
nyx.do grav = 1

7.1 Equations

If we define xi and ui as the location and velocity of particle i, respectively, then we wish to solve

dxi
dt

=
1

a
ui (7.1)

d(aui)

dt
= gi (7.2)

where gi is the gravitational force evaluated at the location of particle i, i.e., gi = g(xi, t).

7.2 Initializing the Particles

There are several different ways in which particles can currently be initialized:

7.2.1 Read from an ASCII file

To enable this option, set

nyx.particle init type = AsciiFile
nyx.ascii particle file =particle file

35

Here particle file is the user-specified name of the file. The first line in this file is assumed to
contain the number of particles. Each line after that contains

x y z mass xdot ydot zdot

Note that the variable that we call the particle velocity, u = aẋ, so we must multiply ẋ, by a
when we initialize the particles.

7.2.2 Read from a binary file

To enable this option, set

nyx.particle init type = BinaryFile
nyx.binary particle file =particle file

As with the ASCII read, the first line in this file is assumed to contain the number of particles.
Each line after that contains

x y z mass xdot ydot zdot

Note that the variable that we call the particle velocity, u = aẋ, so we must multiply ẋ, by a
when we initialize the particles.

7.2.3 Read from a binary ”meta” file

This option allows you to read particles from a series of files rather than just a single file. To enable
this option, set

nyx.particle init type = BinaryMetaFile
nyx.binary particle file =particle file

In this case the particle file you specify is an ASCII file specifying a list of file names with full
paths. Each of the files in this list is assumed to be binary and is read sequentially (individual files
are read in parallel) in the order listed.

7.2.4 Reading SPH particles

For some applications it is useful to initialize the grid data with SPH-type particles. To enable this
option, you must set

nyx.do santa barbara = 1
nyx.init with sph particles = 1

The SPH-type particles can then be read in by setting

nyx.sph particle file =sph particle file

36

where sph particle file is the user-specified name of the file containing the SPH particles. The type
of sph particle file must be the same (Ascii, Binary or BinaryMeta) as the dark matter particle file
as specified by

nyx.particle init type =

The SPH particles will be discarded by the code once the grid data has been initialized.

7.2.5 Random placement

To enable this option, set

nyx.nyx.particle init type = Random

There are then a number of parameters to set, for example:

nyx.particle initrandom count = 100000

nyx.particle initrandom mass = 1

nyx.particle initrandom iseed = 15

7.2.6 Cosmological

Using cosmological initial conditions is a three step process:

1. Generating a transfer function (e.g. with camb)

2. Generating an initial displacement field (with nyx-ic)

3. Starting nyx

In the following we will look at each step a bit closer.

7.2.6.1 Generating a transfer function

The transfer function is used in nyx-ic to generate the power spectrum. The usual way is to use
camb1 to calculate it for the desired universe. A sample camb.ini is provided with nyx-ic. The
important options are:

• transfer redshift(1) = 50

• transfer matterpower(1) = tf

which determine the initial time for the simulation. You should make sure that you catch all
necessary wave numbers for the considered box length and resolution.

From the camb output you have to note values for sigma 8 for a redshift of zero and the initial
redshift. We need this to compute the right normalization.

1See http://camb.info/

37

http://camb.info/

7.2.6.2 Setting up the initial displacements

We calculate the initial displacements with a stand-alone program called nyx-ic. This takes a
transfer function and some cosmological parameters as an argument and outputs an ”init” direc-
tory which basically contains initial displacements for every grid point in a BoxLib MultiFAB.
Furthermore the mf contains a fourth field containing the density contrast as initial condition for
the baryonic matter.
nyx-ic is started with an “inputs“ file similar to the one from Nyx. A sample one is provided. The
options are

#Omega_{Matter}

cosmo.omegam = 0.272

#Omega_{Lambda}

cosmo.omegax = 0.728

#equation of state paramater omega_{effective}

cosmo.weff = -0.980

#Omega_{baryon}*Hubble^2

cosmo.ombh2 = 0.0226

#Hubble/100km/s

cosmo.hubble = 0.704

#scalar spectral index

cosmo.enn = 0.963

initial z

cosmo.z_init = 50

#sidelength of the box (in Mpc)

cosmo.boxside = 90.14

#seed of the rng

cosmo.isd = 100

#resolution of the box

cosmo.gridpoints = 256

#the output file name

cosmo.initDirName = init

#choose the source of the transferfunction

cosmo.transferfunction = CAMB

#some tabulated transferfunction generated with camb (compare camb-ini-file)

cosmo.tabulatedTk = tf

sigma8 for the input tf at z=0 and initial z (to calc the growthfactor)

cosmo.init_sigma8_0 = 0.7891368

cosmo.init_sigma8_init = 2.0463364E-02

38

The code solves the equation

P (k, a) = 2π2δ2
H

kn

Hn+3
0

T 2(k)

(
D(a)

D(a = 1)

)2

(7.3)

to calculate P and from that gaussian distributed density perturbations δ following that spectrum.
Particle displacements are then calculated as Zel’dovich displacements.

Non-gaussian effects as well as neutrino contributions are planned for the future.

7.2.6.3 Using Nyx with cosmological initial conditions

• nyx.nyx.particle init type = Cosmological
set the right init type

• cosmo.initDirName = init
set the name of the displacements directory (boxlib format)

• cosmo.particle mass = 0.19178304E+10
sets the mass [M�] of each particle

• cosmo.omegam = 0.272
set ΩMatter

• cosmo.omegax = 0.728
set ΩΛ

• cosmo.hubble = 0.704
set the reduced hubble constant h

We will generate a particle of mass particle mass in every grid cell displaced from the center
by the value found in the initDirName for that cell. Velocities are calculated in the Zel’dovich
approximation by

~v = ∆~x× 100km/s× a
√

ΩM/a3 + ΩΛ × Lbox (7.4)

where ∆~x is the displacement of the particle.

7.3 Time Stepping

There are currently two different ways in which particles can be moved:

7.3.1 Random

To enable this option, set

nyx.particle move type = Random

Update the particle positions at the end of each coarse time step using a random number between
0 and 1 multiplied by 0.25 dx.

39

7.3.2 Motion by Self-Gravity

To enable this option, set

nyx.particle move type = Gravitational

7.3.2.1 Move-Kick-Drift Algorithm

In each time step:

• Solve for gn (only if multilevel, otherwise use gn+1 from previous step)

• u
n+1/2
i = 1

an+1/2 ((anuni) + ∆t
2 gni)

• xn+1
i = xni + ∆t

an+1/2 u
n+1/2
i

• Solve for gn+1 using xn+1
i

• un+1
i = 1

an+1 ((an+1/2u
n+1/2
i) + ∆t

2 gn+1
i)

Note that at the end of the timestep xn+1
i is consistent with gn+1 becasue we have not advanced

the positions after computing the new-time gravity. This has the benefit that we perform only one
gravity solve per timestep (in a single-level calculation with no hydro) because the particles are
only moved once.

7.3.2.2 Computing g

We solve for the gravitational vector as follows:

• Assign the mass of the particles onto the grid in the form of density, ρDM . The mass of each
particle is assumed to be uniformly distributed over a cube of side ∆x, centered at what we
call the position of the particle. We distribute the mass of each particle to the cells on the
grid in proportion to the volume of the intersection of each cell with the particle’s cube. We
then divide these cell values by ∆x3 so that the right hand side of the Poisson solve will be
in units of density rather than mass. Note that this is the comoving density.

• Solve ∇2φ = 4πG
a ρDM . We discretize with the standard 7-point Laplacian (5-point in 2D)

and use multigrid with Gauss-Seidel red-black relaxation to solve the equation for φ at cell
centers.

• Compute the normal component of g = −∇φ at cell faces by differencing the adjacent values
of φ, e.g. if g = (gx, gy, gz), then we define gx on cell faces with a normal in the x-direction
by computing gx,i−1/2,j,k = −(φi,j,k − φi−1,j,k)/∆x.

• Interpolate each component of g from normal cell faces onto each particle position using linear
interpolation in the normal direction.

40

7.4 Output Format

7.4.1 Checkpoint Files

The particle positions and velocities are stored in a binary file in each checkpoint directory. This
format is designed for being read by the code at restart rather than for diagnostics.

We note that the value of a is also written in each checkpoint directory, in a separate ASCII
file called comoving a, containing only the single value.

7.4.2 Plot Files

If particles.write in plotfile = 1 in the inputs file then the particle positions and velocities will
be written in a binary file in each plotfile directory.

In addition, we can also visualize the particle locations as represented on the grid. There are
two “derived quantities” which represent the particles. Setting

amr.derive plot vars = particle count particle mass density
amr.plot vars = NONE

in the inputs file will generate plotfiles with only two variables. particle count represents the
number of particles in a grid cell; particle mass density is the density on the grid resulting from
the particles.

We note that the value of a is also written in each plotfile directory, in a separate ASCII file
called comoving a, containing only the single value.

7.4.3 ASCII Particle Files

To generate an ASCII file containing the particle positions and velocities, one needs to restart from a
checkpoint file but doesn’t need to run any steps. For example, if chk00350 exists, then one can set:

amr.restart = chk00350
max step = 350
particles.particle output file = particle output

which would tell the code to restart from chk00350, not to take any further time steps, and to write
an ASCII-format file called particle output.

This file has the same format as the ASCII input file:

number of particles
x y z mass xdot ydot zdot

41

7.4.4 Run-time Data Logs

If you set

amr.data log = log file

in the inputs file, then at run-time the code will write a log file with entries every coarse grid time
step, containing

nstep time dt redshift a

7.4.5 Run-time Screen Output

There are a number of flags that control the verbosity written to the screen at run-time. These
are:
amr.v
nyx.v
gravity.v
mg.v
particles.v

These control printing about the state of the calculation (time, value of a, etc) as well as timing
information.

42

Chapter 8

Visualization

The BoxLib format in which NYX output is written can be read by amrvis, VisIt, and yt.

8.1 amrvis

We have a homegrown visualization tool called amrvis. We encourage you to build the amrvis3d
executable, and to try using it to visualize your data. A very useful feature is View/Dataset, which
allows you to actually view the numbers – this can be handy for debugging. You can modify how
many levels of data you want to see, whether you want to see the grid boxes or not, what palette
you use, etc.

If you like to have amrvis display a certain variable, at a certain scale, when you first bring
up each plotfile (you can always change it once the amrvis window is open), you can modify the
amrvis.defaults file in your directory to have amrvis default to these settings every time you run it.

8.2 VisIt

VisIt is also a great visualization tool, and it directly handles our plotfile format (which it calls
Boxlib).

See http://visit.llnl.gov

To use the Boxlib3D plugin, select it from File → Open file → Open file as type Boxlib, and then
the key is to read the Header file, plt00000/Header, for example, rather than telling to to read
plt00000.

8.3 yt

yt also handles BoxLib format and is a great visualization tool for Nyx output.

Here are quick instructions from Matthew Turk:

The directories require that the inputs file be one level up, so that the hierarchy of files looks
something like:

43

data/
data/inputs
data/plt00001
data/plt00002

To load the data in yt, you would then do:
from yt.mods import *
pf = load(”data/plt00001”)

You can also be in the data/ directory and just load plt00001.

See http://yt.enzotools.org to download yt and for more information.

8.4 Controlling What’s in the PlotFile

amr.plot vars =

and

amr.derive plot vars =

are used to control which variables are included in the plotfiles. The default for amr.plot vars is
all of the state variables. The default for amr.derive plot vars is none of the derived variables.
So if you include neither of these lines then the plotfile will contain all of the state variables and
none of the derived variables.

If you want all of the state variables plus entropy and pressure (both derived quantities), for ex-
ample, then set

amr.derive plot vars = entropy pressure

If you just want density (state variable) and pressure (derived quantity), for example, then set

amr.plot vars = density

amr.derive plot vars = pressure

Recall that we can also control whether the particles are written into a separate file in the
plotfile directory by setting

particles.write in plotfile = 1

44

Chapter 9

Software Framework

9.1 Code structure

The code structure in the NYX directory that you have checked out is the following:

• Parallel : the “primary” directory, all in C++/Fortran

– amrlib : basic routines necessary for AMR

– bndrylib : basic interface routines

– BoxLib : the most basic directory, everything depends on classes defined here

– Nyx : this is where all the actual algorithm stuff lives

∗ Exec : various examples

· Test 90Mpc : run directory for the 90Mpc box problem

∗ Source : source code

∗ UsersGuide : you’re reading this now!

– mglib : this is the MultiGrid solver written in C++/Fortran – would be used for the
Poisson solve if we didn’t use the F90 solver

– MGT solver : this is the interface between the C++ code and the F90 multigrid solver

– mk : makefile stuff for C++/Fortran

– pAmrvis : contains amrvis, a visualization tool for 2D and 3D plotfiles

– scripts : compiling stuff for C++/Fortran

– util : various data analysis utilities

– volpack : package required to compile and run amrvis in 3d

• fParallel : the F90 directory, used here only for the multilevel Poisson solver, EOS, and
neworks.

– boxlib : the most basic directory which defines things for the F90 codes

– data processing : this contains Fortran routines that read in Nyx plotfiles and can
do simply processing, including extracting a line along the x, y, or z-axis, averaging a
solution over spherical angles to get the profile as a function of radius, and dumping out
a brick of data that can be read by IDL – see Mike Zingale if interested

45

– extern : contains EOS and networks

– mg : F90 multigrid – used for the gravity solver only

– mk : makefile stuff for F90

– scripts : compiling stuff for F90

Within Parallel/Nyx are the following files:

• Nyx.cpp : this holds the time advancement algorithm

• Nyx setup.cpp : this is where components of the state, boundary conditions, derived quan-
tities, and error estimation quantities are defined for a run

• MacBndry.cpp : this is needed to correctly do the adaptive boundary conditions for the
Poisson solver

• main.cpp : initializes the BoxLib and timing stuff properly – don’t mess with this

9.2 Variable Names

The following is a list of variables, routines, etc used in NYX. It may not be complete or even
entirely accurate; it’s mostly intended for my own use.

lo,hi: index extent of the ”grid” of data currently being handled by a NYX routine

domlo, domhi: index extent of the problem domain. This changes according to refinement
level: 0th refinement level will have 0, castro.max grid size, and nth level will go from 0 to cas-
tro.max grid size*(multiplying equivalent of sum)castro.ref ratio(n).

dx: cell spacing, presumably in cm, since CASTRO uses cgs units

xlo: physical location of the lower left-hand corner of the ”grid” of data currently being handled
by a CASTRO routine

bc: array that holds boundary condition of and array. Sometimes it appears of the form bc(:,:)
and sometimes bc(:,:,:). The last index of the latter holds the variable index, i.e. density, pressure,
species, etc.

9.3 Parallel I/O

Both checkpoint files and plotfiles are really directories containing subdirectories: one subdirectory
for each level of the AMR hierarchy. The fundamental data structure we read/write to disk is a
MultiFab, which is made up of multiple FAB’s, one FAB per grid. Multiple MultiFabs may be
written to each directory in a checkpoint file. MultiFabs of course are shared across CPUs; a single
MultiFab may be shared across thousands of CPUs. Each CPU writes the part of the MultiFab
that it owns to disk, but they don’t each write to their own distinct file. Instead each MultiFab is

46

written to a runtime configurable number of files N (N can be set in the inputs file as the parameter
amr.checkpoint nfiles and amr.plot nfiles; the default is 64). That is to say, each MultiFab is
written to disk across at most N files, plus a small amount of data that gets written to a header
file describing how the file is laid out in those N files.

What happens is N CPUs each opens a unique one of the N files into which the MultiFab is
being written, seeks to the end, and writes their data. The other CPUs are waiting at a barrier for
those N writing CPUs to finish. This repeats for another N CPUs until all the data in the MultiFab
is written to disk. All CPUs then pass some data to CPU 0 which writes a header file describing
how the MultiFab is laid out on disk.

We also read MultiFabs from disk in a ”chunky” manner opening only N files for reading at a
time. The number N, when the MultiFabs were written, does not have to match the number N
when the MultiFabs are being read from disk. Nor does the number of CPUs running while reading
in the MultiFab need to match the number of CPUs running when the MultiFab was written to
disk.

Think of the number N as the number of independent I/O pathways in your underlying parallel
filesystem. Of course a ”real” parallel filesytem should be able to handle any reasonable value of
N. The value -1 forces N to the number of CPUs on which you’re running, which means that each
CPU writes to a unique file, which can create a very large number of files, which can lead to inode
issues.

47

48

Chapter 10

Verification Test Problems

10.1 Cosmology Test Problems

10.1.1 90Mpc Box Problem from Cosmic Data Arxiv

This is a standard test problem with initial particle positions and velocities taken from the Cosmic
Data Arxiv (http://t8web.lanl.gov/people/heitmann/arxiv).
The size of the box is 90.14 Mpc on a side.
The initial redshift is z = 50; we end the calculation at redshift = 0; equivalently at a = 1.
(Recall that a = 1/(1 + z).

49

50

References

[1] A. Maier, L. Iapichino, W. Schmidt, and J. C. Niemeyer. Adaptively Refined Large Eddy
Simulations of a Galaxy Cluster: Turbulence Modeling and the Physics of the Intracluster
Medium. Astrophysical Journal, 707:40–54, 2009.

[2] P. Sagaut. Large eddy simulation for incompressible flows: An introduction. Berlin: Springer-
Verlag, 2006.

[3] W. Schmidt and C. Federrath. A fluid-dynamical subgrid scale model for highly compressible
astrophysical turbulence. Astronomy and Astrophysics, 528:A106+, April 2011.

[4] W. Schmidt, J. C. Niemeyer, and Hillebrandt. A localised subgrid scale model for fluid dynam-
ical simulations in astrophysics. I. Theory and numerical tests. Astronomy and Astrophysics,
450:265–281, 2006.

[5] U. Schumann. Subgrid scale model for finite difference simulations of turbu lent flows in plane
channels and annuli. Journal of Computational Physics, 18:376–404, 1975.

51

	Introduction
	Getting Started
	Getting Started With Git
	Building the Code
	Running the Code
	Visualization of the Results

	Inputs Files
	Problem Geometry
	List of Parameters
	Examples of Usage

	Domain Boundary Conditions
	List of Parameters
	Notes
	Examples of Usage

	Resolution
	List of Parameters
	Examples of Usage

	Tagging
	List of Parameters
	Notes

	Regridding
	Overview
	List of Parameters
	Notes
	Examples of Usage
	How Grids are Created

	Simulation Time
	List of Parameters
	Notes
	Examples of Usage

	Time Step
	List of Parameters
	Examples of Usage

	Subcycling
	List of Parameters
	Examples of Usage

	Restart Capability
	List of Parameters
	Notes
	Examples of Usage

	Controlling PlotFile Generation
	List of Parameters
	Notes
	Examples of Usage

	Screen Output
	List of Parameters
	Notes
	Examples of Usage

	Gravity
	List of Parameters
	Notes

	Physics
	List of Parameters

	Units and Constants
	Units and Constants

	Equations in Comoving Coordinates
	Hydrodynamic Equations in Comoving Coordinates
	Conservative Form
	Tracing

	Subgrid Scale Model in Comoving Coordinates

	Gravity
	Dark Matter Particles
	Equations
	Initializing the Particles
	Read from an ASCII file
	Read from a binary file
	Read from a binary "meta" file
	Reading SPH particles
	Random placement
	Cosmological
	Generating a transfer function
	Setting up the initial displacements
	Using Nyx with cosmological initial conditions

	Time Stepping
	Random
	Motion by Self-Gravity
	Move-Kick-Drift Algorithm
	Computing g

	Output Format
	Checkpoint Files
	Plot Files
	ASCII Particle Files
	Run-time Data Logs
	Run-time Screen Output

	Visualization
	amrvis
	VisIt
	yt
	Controlling What's in the PlotFile

	Software Framework
	Code structure
	Variable Names
	Parallel I/O

	Verification Test Problems
	Cosmology Test Problems
	90Mpc Box Problem from Cosmic Data Arxiv

	References

